Procedure Guidelines
Nuclear Medicine

Dutch Society of Nuclear Medicine

Editor-in-chief: JP Esser

I Diagnostic Methods JP Esser, chiefeditor
II Radionuclide Therapy JP Esser, chiefeditor
III Radiopharmaceuticals JJJ van den Heuvel, editor
IV Equipment JA van Dalen, editor
V Radiation Dosimetry in Nuclear Medicine JA van Dalen, editor
Procedure Guidelines Nuclear Medicine

ISBN 978-90-78876-09-0

Dutch Society of Nuclear Medicine
Committee for Quality Improvement of Dutch Society of Nuclear Medicine (NVNG)
• JJJG van den Heuvel (chairman)
• JA van Dalen (secretary)
• JP Esser
• B de Keizer
• KP Koopmans
• MN Lub-de Hooge
• RL Romijn
• NC Veltman

English language editing and translation
• EC Owers
 CDJM de Pont

"The development of this Guideline has been financed by Stichting Kwaliteitsgelden Medisch Specialisten (SKMS)"

Second revised edition

©Dutch Society of Nuclear Medicine (NVNG)

This publication is the responsibility of the Dutch Society for Nuclear Medicine (NVNG). However, both the NVNG and the publisher cannot accept any liability with regards to the content, including any errors or omissions that may occur.

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other non-commercial uses permitted by copyright law. For permission requests, write to the publisher, addressed "Attention: Permissions Coordinator".
Foreword

Dear reader,

It is with the greatest pleasure that I present to you the new Procedure Guidelines. For the fifth time now, several of our colleagues have succeeded in updating the guidelines, aiming to bring the practice of Nuclear Medicine in line with the latest evidence-based practices. With our first loose leaf edition appearing in 1988, our profession was already aware that the practice of Nuclear Medicine is not an arbitrary matter but that patients deserve that we perform diagnostics and treatment in an unambiguous and accountable manner. In doing so, we were the forerunners of what has now been made mandatory as standard practice by the government.

Over the past few years, there has been a trend in healthcare across the board to practise medicine in line with established criteria and protocols. It has now been widely accepted that patient care is delivered in the safest and best possible way if it proceeds in line with protocols established by the profession itself. As care professionals, we are increasingly required to justify how we conduct our healthcare practice and on what grounds we have made our choices. Both policy makers and health insurers, after all, are guided by achievement indicators and outcome parameters to decide on matters of licensing and contracting.

There are three reasons that make this edition a rather special one. Firstly, this is not only a work of revision but also, with many new chapters, of complete renewal. Secondly, this will be the last edition to appear in print. With advancing digitization, revision will be done on a continuous, online and modular basis from now on. Thirdly, owing to surging interest in and from neighbouring nations, this revision has been published in English. A special word of thanks, therefore, should go to our colleagues E.C. Owers and C.D.J.M. de Pont, who have undertaken the full copy-editing of this edition.

I would like to thank kindly all those authors whose great dedication has contributed to the realization of this edition, headed by the Committee for Quality Improvement of Dutch Society of Nuclear Medicine (NVNG), consisting of J.J.G. van den Heuvel, J.A. van Dalen, B. de Keizer, K.P. Koopmans, M.N. Lub-de Hooge, R.L. Romijn, N.C. Veltman and further J.B.A. Habraken and A.J. Arends. Their work took place under the inspiring leadership and exemplary management of editor-in-chief, J.P. Esser.

It is gratifying to think that, in fact, all of us bear responsibility for the accomplishment of these guidelines for all of us have, explicitly or perhaps implicitly, approved the chapter versions that have now been included. I am confident that our approval ensures our commitment to their observance. We would like to express our hope, finally, that this new edition will continue to be the cornerstone of our Nuclear Medicine practice, if now at an international level.

Prof. L.F. de Geus-Oei
President of the Dutch Society of Nuclear Medicine
Preface

These Procedure Guidelines contains:
I. Diagnostic Methods
II. Radionuclide Therapy
III. Radiopharmaceuticals
IV. Equipment
V. Radiation Dosimetry in Nuclear Medicine

Status
These procedure guidelines are recommendations and give no right to any special legal status, rights or obligations. Members of the Society have had the opportunity to comment on all aspects of each procedure described in this book for the period of at least three months. All comments have been reviewed and the text has been changed when necessary. In this way we have created a broad support and consensus among all members of the Society.

Warning
Some of the guidelines use unregistered (radio)pharmaceuticals. In most of these cases this is explicitly stated at the beginning of the chapter. However, it should not be assumed that a (radio)pharmaceutical is registered when no warning is given. The doctor in charge of the investigation/procedure is accountable for the use of all these radiopharmaceuticals. In most cases the doctor needs to fill out a form for compassionate use. This is a form in which the responsible doctor declares that he/she is aware that the product is not proven safe and effective and that the patient has been informed of this. These radiopharmaceuticals are mentioned in this book due to their acceptance by the occupational group, in accordance with the up to date professional literature.

Content
Each guideline is an approach to the acts that are necessary for adequate implementation and effective application of the most common nuclear medicine therapies and investigations. The procedure guidelines must be seen as minimum requirements. If a procedure differs this must be done with solid motivation. Alternative procedures and/or use of other parameters that will eventually give the same information are optional. Also the activity doses mentioned are recommendations. They will depend on the sensitivity of the gamma camera system which is used, count statistics, image quality, status of the patient, radiation protection and other facts. It is clear that these procedure guidelines must not be seen as a textbook. Wherever possible, up to date evidence based literature and guidelines were pursued in writing these procedure guidelines. This book is therefore, not an exhaustive account of all subjects. Most of the common, though not all, investigation/therapy procedures are described. Experimental investigations and or therapies are not taken into account in this edition.
Purpose
The purpose of the procedure guidelines is to improve the quality of nuclear medicine investigations and radiation protection of patients. In order to reach this objective we strive for standardisation of procedures between different institutions/departments. Reproducibility and comparison with former studies is important.

Improvement of Quality
This is probably the last paper edition of the Procedure Guidelines of Nuclear Medicine. From now on, Committee for Quality Improvement of Dutch Society of Nuclear Medicine (NVNG) aims to update the guidelines on the NVNG website whenever necessary. Improvements and additions can then be processed more quickly. NVNG members will be informed by email or mail if/when this is the case.

Auteurs and reviewers
This and former editions of our guidelines came into being through extensive contribution of several society members. The person(s) in charge of writing or updating a guideline is(are) mentioned above every procedure guideline. Reviewers are not always mentioned though their contribution is essential. We, as the Committee for Quality Improvement of Dutch Society of Nuclear Medicine (NVNG), would like to thank all the writers and reviewers for contributing to these procedure guidelines. Without their help we would never have been able to accomplish this task.
Contents

Preface
Foreword

Part I: Diagnostic Methods

Brain and Lacrimal tract
- Cisternal Scintigraphy 14
- Regional Cerebral Blood Perfusion Scintigraphy 18
- Dopamine Transporters and Receptor Scintigraphy 22
- 18F FDG PET/CT of the Brain 27
- Lacrimal Scintigraphy 31

Tumour and endocrine glands
- Thyroid Scintigraphy 35
- Measurement of Thyroid Iodine Uptake 42
- Iodine Total Body Scintigraphy 47
- Parathyroid Scintigraphy 52
- MIBG Scintigraphy 59
- Somatostatin-receptor Scintigraphy 65
- Adrenal Scintigraphy 71
- Sentinel Node Localisation in Breast Cancer 75
- Sentinel Node Localisation of Melanoma 80
- Molecular Breast Imaging (MBI) 85
- 18F FDG PET/CT in Oncology 90
- 124I PET/CT in Thyroid Cancer 119
- 18F choline PET/CT in Prostate Cancer 126
- 18F FES PET/CT in Oncology 132
- 18F DOPA PET/CT in Neuroendocrine Tumours and in Presynaptic Dopaminergic Deficits 136

Hematopoietic system
- Lymphoscintigraphy of the Upper Extremities 145
- Lymphoscintigraphy of the Lower Extremities 151
- Spleen Scintigraphy Using Denatured Erythrocytes 158
- Erythrocyte and Plasma Volume Measurement 161
- Erythrocyte Survival Time 167
- Leucocyte Scintigraphy 171
- Platelet Kinetics 178
- 68Ga Scintigraphy 182
- 18F FDG PET/CT in Inflammation and Infection Detection 187

Cardiovascular system
- Myocardial Perfusion Scintigraphy 191
- 18F FDG PET/CT in Myocardial Viability 205
- Equilibrium Radionuclide Angiography / Multigated Acquisition 211
Quantification of Left-to-Right Cardiac Shunt 215
Quantification of Right-to-Left Cardiac Shunt 219
82Rb PET/CT of Myocardial Perfusion 222
13NH3 ammonia and H215O PET/CT of Myocardial Perfusion 228
123I MIBG Cardiac Sympathetic Innervation Scintigraphy 238

Locomotor system
Bone Mineral Densitometry with Dual Energy X-Ray Absorptiometry 244
Bone Scintigraphy 249
18F NaF PET/CT of Bone 261

Respiratory tract
Lung Perfusion Scintigraphy 270
81mKr Ventilation Scintigraphy 274
99mTc Aerosols Ventilation Scintigraphy 277
Nasal Mucociliary Clearance 280

Gastrointestinal tract
Salivary Gland Scintigraphy 284
Oesophageal Scintigraphy 288
Scintigraphy of Gastric Emptying 291
Scintigraphy of Ectopic Gastric Mucosa 300
Scintigraphy of Gastrointestinal Tract Haemorrhage 304
Detection of Gastrointestinal Protein Loss using 99mTc-HSA 308
Detection of Gastrointestinal Protein Loss using 51Cr 311
Bile Acid Malabsorption Test 314
Bile Acid Breath Test 319
Liver and Spleen Scintigraphy 323
Hepatic Haemangioma Scintigraphy 327
14C urea Breath Test 330
Cholescintigraphy 334

Urinary tract
Renal Cortical Scintigraphy 341
Dynamic Renal Scintigraphy 344
Measurement of Renal Function (GFR and ERPF) 352
Micturition Cystourethrography using Scintigraphy 356

General
Specific Preparations for 18F FDG PET/CT in Critically Ill Patients on Intensive Care Units 360
Paediatric Dosage 367

Part II: Radionuclide Therapy

131I Therapy in Primary Hyperthyroidism and Non-Toxic (Multi)Nodular Goitre 372
131I Therapy for Treatment of Differentiated Thyroid Carcinoma 384
Appendix 395

General Introduction to Bone Seeking Radiopharmaceuticals for the Treatment of Patients with Osteoblastic skeletal Metastases 398
188Re HEDP etidronate 400
PROCEDURE GUIDELINES

CONTENTS - 9

223Ra dichloride 404
153Sm lexidronam 407
89Sr chloride 411

Radiosynoviorthesis 415
90Y ibritumomab tiuxetan Treatment of Follicular NHL 420
Radioembolization Treatment for Hepatic Malignancies 428
32P phosphate Treatment of Myeloproliferative Diseases 435
Peptide Receptor Radionuclide Therapy using 177Lu octreotate 439

Part III: Radiopharmaceuticals 445

Radiopharmacy introduction 447
General Recommendations 451
Carbon-14
14C urea 454
Chromium-51
51Cr erythrocytes 456
51Cr chloride 459
51Cr edetate 461
Cobalt-57
57Co cyanocobalamin 462
Fluor-18
18F fluorodeoxyglucose 463
18F fluordopa 465
18F fluoroestradiol 468
18F sodium fluoride 470
18F fluorocholine 472
Gallium-67
67Ga citrate 474
Indium-111
111In oxine leukocytes 476
111In DTPA 480
111In pentetreotide 482
111In oxine thrombocytes 484
Iodine-123
123I iobenguane 487
123I ioflupane 490
123I iolopride 493
123I sodium iodide 495
123I iodohippurate 497
Iodine-124
124I sodium iodide 499
Iodine-125
125I albumin 501
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Compound</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine-131</td>
<td>¹³¹I albumin</td>
<td>503</td>
</tr>
<tr>
<td></td>
<td>¹³¹I norcholesterol</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td>¹³¹I sodium iodide</td>
<td>508</td>
</tr>
<tr>
<td></td>
<td>¹³¹I iodohippurate</td>
<td>512</td>
</tr>
<tr>
<td>Krypton-81m</td>
<td>⁸¹mKrypton</td>
<td>514</td>
</tr>
<tr>
<td>Lutetium-177</td>
<td>¹⁷⁷Lu octreotate</td>
<td>515</td>
</tr>
<tr>
<td>Nitrogen-13</td>
<td>¹⁵N ammonia</td>
<td>518</td>
</tr>
<tr>
<td>Oxygen-15</td>
<td>¹⁸O water</td>
<td>521</td>
</tr>
<tr>
<td>Phosphorous-32</td>
<td>³²P sodium phosphate</td>
<td>523</td>
</tr>
<tr>
<td>Radium-223</td>
<td>²²³Ra dichloride</td>
<td>526</td>
</tr>
<tr>
<td>Rhenium-188</td>
<td>¹⁸⁸Re etidronate</td>
<td>528</td>
</tr>
<tr>
<td>Rubidium-82</td>
<td>⁸²Rb chloride</td>
<td>531</td>
</tr>
<tr>
<td>Samarium-153</td>
<td>¹⁵³Sm lexidronam</td>
<td>535</td>
</tr>
<tr>
<td>Selenium-75</td>
<td>⁷⁵Se tauroselcholic acid</td>
<td>537</td>
</tr>
<tr>
<td>Strontium-89</td>
<td>⁸⁹Sr chloride</td>
<td>538</td>
</tr>
<tr>
<td>Technetium-99m</td>
<td>⁹⁹ᵐTc erythrocytes (modified in-vivo)</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc erythrocytes (in-vivo)</td>
<td>543</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc erythrocytes (in-vitro)</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc exametazime (HMPAO) leukocytes</td>
<td>549</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc denaturated erythrocytes</td>
<td>553</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc albumin</td>
<td>557</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc bicisate</td>
<td>559</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc colloidal tin</td>
<td>562</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc macrosalb</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc mebrofenin</td>
<td>566</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc bisphosphonates</td>
<td>568</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc mertiatide</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc nanocolloid</td>
<td>572</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc sodium pertechnetate</td>
<td>574</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc pentetate</td>
<td>576</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc succimer</td>
<td>579</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc succimer</td>
<td>582</td>
</tr>
<tr>
<td></td>
<td>⁹⁹ᵐTc tetrofosmin</td>
<td>584</td>
</tr>
</tbody>
</table>
Yttrium-90

\(^{90}\)Y ibritumomab tiuxetan 586
\(^{90}\)Y citrate colloid 588

Part IV: Equipment 591

Equipment introduction 592

Gamma Camera Overview 597
- Planar Gamma Camera 607
- SPECT Gamma Camera 628
- Whole Body Gamma Camera 633

PET-CT Scanner 637

Laboratory Equipment 662
- Dose Calibrator 662
- Radiation Monitors 671
- Semiconductor Detector 675
- Gamma Sample Changer 682

Probes 685

Preliminary Procedure Guidelines on Quality Control of (Medical) software in nuclear medicine 696

Co-registration in Hybrid Imaging Devices 712

PET-CT in Radiation Treatment Planning 716

Part V: Radiation Dosimetry in Nuclear Medicine 751